
Jesse Jones, 06.01.2026, GöAID Seminar Series

How-To: Context-Aware LLM-
assisted coding workflows for
science

Overview of contents

• Point of View

• Scientific Coding Workflow and DevOps Cycles

• Context-aware LLM models

• Model Context Protocol (MCP)

• Context-aware LLM assisted scientific coding workflow + „prompt

engineering“

• Conclusion

Point of View
About me

German Biophysical Society German Physical SocietyGerman

Research Software Engineers

Domain Scientist with Research Software Engineering Aspirations

Point of View
About me

Scientific Coding Workflow and DevOps Cycles

• Different phases in the DevOps
Cycle have different
requirements and target code
quality

• Dev cycle is often more
experimental, code less refined
and less tested

• Ops cycle is more established,
code is refined and tested, run
on a large scale

Scientific Coding Workflow and
DevOps Cycles

• In most scientific work, only the
Dev cycle is important, as the
code is not (yet) part of the core
contribution of the work

• Most of the Code is only
completely executed a very low
number of times (e.g. <10 times)
over a projects duration, only
users are the developers

• Hence, the quality measures
change

Scientific Coding Workflow and
DevOps Cycles

Scientific Coding Workflow and DevOps Cycles
Quality Metrics for scientific coding workflows in physical sciences

Importance

Functionality
and Correctness

Reliability and
Availability

Security Performance
and Efficiency

Usability

Process
Efficiency

Testability and
Test Coverage

Maintainability Flexibility and
Portability

Code Quality

External Quality
Measures

Internal Quality
Measures

Context-aware LLM models

• Context-aware relates to the context of files, databases, codebases in your
current project which are added to the prompts received by the LLM (and
therefore loaded into the context window)

• Example implementation: Claude Code CLI

• Core life quality improvements include:

• CLAUDE.md file and Initialisation

• Tool Usage including file search capacities, file writing, git interactions

• Custom commands, skills and agents

Context-aware LLM models
CLAUDE.md - project documentation automatically loaded into the context

• Document:

• Core files and utility functions

• Common bash commands

• Code style guidelines and (git)-repository etiquette

• Environment setup (e.g. pyenv & compiler setups)

• Other project specific information to remember

• `/init` will automatically create a base sketch of a CLAUDE.md file

Context-aware LLM models
Tool Usage

• Available tools out of the box are e.g. mv, rm, file writing and reading, as well
as searching

• Access specific files for the model to read into context window or search for
context window additions with `@` operator

• Also available git and GitHub commands with the GitHub CLI tool

• Interaction between LLM inputs and any tools are done via Model Context
Protocol (MCP)

Context-aware LLM models
Custom commands, skills and agents

• Shortcuts for repetitive text can be created via `/`commands, e.g. /debug

• `/`commands can include keyword $ARGUMENTS

• Skills are shortcuts not explicitly called by the user but autonomously invoked
when matching a task context

• Agents are „personalities“ which the LLM can become, typically limiting the
instance of the LLM to work on one specific task, sparing out the context of
the different instances

MCP
Model Context Protocol

• Open-Source standard for connecting AI applications to external systems
(data sources, tools, workflows)

• Server-Client architecture where MCP-host (LLM) establishes connection(s) to
MCP server(s) maintained by MCP client

MCP
Model Context Protocol

Transport Layer

Transport
Mechanisms:

Stdio transport

Streamable
HTTP transport

Data Layer

JSON-RPC 2.0

Lifecycle
Management

Connection
Init./term.

Conn. Capability
Negotiation

Core Server
Features

Tools for AI
actions

Resources for
context data

Prompts and
interaction templates

Core Client
Features

Server to client LLM
sample requests Elicit user input Client logging

Utility Features Notifications for
RT updates

Progress
tracking

Context-aware LLM assisted scientific coding workflow
Workflows for coding in science

• Early stages in the project:

• Explore, plan, code, execute, refine, commit

• Larger software projects:

• Write tests, commit; code, iterate, commit

• General workflow best practice (or if unknown workflow requirements):

• Ask LLM to make a plan on how to proceed, then iterate until satisfied with plan

„Prompt Engineering“
Checklist for a good prompt

• Before writing a prompt, use the (mental) checklist:

• Is this prompt for a LLM-agent? If so, reduce any action requests to things
the agent would be in charge of

• Are there any specific predefined workflows to use?

• Specifically request a workflow through a /command

• Have the LLM figure out which workflow to use by referencing skills

• Define a specific alternative workflow in the prompt

„Prompt Engineering“
Checklist for a good prompt

• Can I give context via file-references (direct: „read @logfile.txt“, indirect: „read
the log file“)

• Direct file references are usually better, as the user often understands the
big picture and the problem better

• Does my prompt contain every additional information I want to add manually?

• Is my prompt written concise and succinct? Too much information might lead
to undesired results

• Do I give emphasis on which part of the task I want to have handled in which
way and in which order?

Advanced Strategies
Intentional Compaction of Context Windows

• Regular Prompting Workflow: Prompt - Code - Evaluate - Prompt until you
reach a loop often indicated by „You’re absolutely right.“

• Hitting the „You’re absolutely right“ you can refresh context by starting a new
session and including in the prompt the learnings of the last session.

• Intentional Compaction: Have original LLM agent write a progress file which
onboards the fresh-session agent

• Removes large context operations from current context like file-searching,
code flow understanding, file-edits, test/build output, MCP tool responses

Advanced Strategies
Subagents - Searcher Agent

• Subagents (i.e. multiple LLM instances working in parallel on different tasks in
the same project) are really about context control

• Less and more focused information leads to less unnecessary context,
which leads to better results for this task

• Example:

• Searching Subagent - called through the prompt „find where xyz is
handled, use the subagent searcher“ within the parent-agent

• The searcher subagent/child-agent finds the files, returns filenames
without cluttering the context window of the parent agent

Advanced Strategies
Subagents - Searcher Agent

• Split Workflow Steps into subagents to increase quality of individual steps

• For example: Explore, plan, code, execute, refine, commit as research, plan, implement

• Research Subagent: understand how the system works, find all relevant files, explore causes of xyz bug

• return document with problem specific information, and code references with filenames and line
numbers, function names etc.

• HUMAN REVIEW STEP

• Planning Subagent: Outline Exact implementation steps, include filenames, lines and snippets, add
explicit testing steps

• HUMAN REVIEW STEP

• Implementing Subagent: Straightforward from this point on

Human Intervention
Where to spend your time most efficiently?

Human Intervention
Where to spend your time most efficiently?

Human Intervention
Where to spend your time most efficiently?

Demonstration

Conclusion

• Using Context-Aware LLM coding assistants and controlling the context is
helpful in saving time for researchers

• Controlling context actively: giving all necessary information, but not more

• Correct application includes identifying the importance of internal and external
quality measures for software and including this evaluation into the work

• MCP acting like a USB-standard for LLM-tool interactions helps tremendously,
as LLMs need only be supervised

• Human supervision and good planning is still key for good results

Acknowledgements
Contact: j.jones@tu-berlin.de

Mroginski Group: Biomodeling @ TU Berlin 
https://github.com/biomodeling-tub

mailto:j.jones@tu-berlin.de

