How-To: Context-Aware LLM-
assisted coding workflows for
science

Jesse Jones, 06.01.2026, GOAID Seminar Series

Overview of contents

e Point of View
» Scientific Coding Workflow and DevOps Cycles
e Context-aware LLM models

 Model Context Protocol (MCP)

* Context-aware LLM assisted scientific coding workflow + ,,prompt
engineering”

e Conclusion

Point of View

About me
de ’\ Deutsche
(S) s, » DOFB & @ DPG
German

Research Software Engineers German Biophysical Society German Physical Society

Domain Scientist with Research Software Engineering Aspirations

Point of View

About me

/ /
(Z1,...2Zy) (r1,...r,) | (x},...x)) (r1,...rp) | (xi,...xL)y (r,...1)
| |
embedding, 64 | |
interaction, 64 |-m— | atom-wise, 64 I ||r,- ; V) H
| | I I rbf, 300
interaction, 64 |<em— | cfconv, 64 I I
| dense, 64
interaction, 64 |e— l atom-wise, 64 I I
| I I shifted softplus
atom-wise, 32 shifted softplus |
I I I dense, 64
shifted softplus l atom-wise, 64 l I
shifted softplus
. I I I I I
atom-wise, 1 \ (Vi .- vp) |
Interaction cfconv
sum pooling | |
i | (I4+1 I+1 I I+1 I4+1
E | X1 Xy) | (xl ’ Xn)

Scientific Coding Workflow and DevOps Cycles

RELEASE |
. DEPLOY

MONITOR OPERATE

Scientific Coding Workflow and
DevOps Cycles

* Different phases in the DevOps
Cycle have different ‘ ans |
requirements and target code . o
quality I

 Dev cycle is often more
experimental, code less refined

and less tested
MONITOR OPERATE

* Ops cycle is more established,
code Is refined and tested, run
on a large scale

o

Scientific Coding Workflow and
DevOps Cycles

* |n most scientific work, only the
Dev cycle is important, as the
code is not (yet) part of the core
contribution of the work

 Most of the Code is only
completely executed a very low
number of times (e.g. <10 times)
over a projects duration, only
users are the developers

 Hence, the quality measures
change

Scientific Coding Workflow and DevOps Cycles

Quality Metrics for scientific coding workflows In physical sciences

External Quality
Measures

Internal Quality -

>

Importance

Context-aware LLM models

 Context-aware relates to the context of files, databases, codebases in your
current project which are added to the prompts received by the LLM (and
therefore loaded into the context window)

 Example implementation: Claude Code CLI
e Core life quality improvements include:
 CLAUDE.md file and Initialisation
* Jool Usage including file search capacities, file writing, git interactions

 Custom commands, skills and agents

Context-aware LLM models

CLAUDE.md - project documentation automatically loaded into the context

 Document:
* Core files and utility functions
« Common bash commands
 Code style guidelines and (git)-repository etiquette
 Environment setup (e.g. pyenv & compiler setups)
* Other project specific information to remember

« /init will automatically create a base sketch of a CLAUDE.md file

Context-aware LLM models

Tool Usage

* Available tools out of the box are e.g. mv, rm, file writing and reading, as well
as searching

* Access specific files for the model to read into context window or search for
context window additions with @ operator

* Also available git and GitHub commands with the GitHub CLI tool

* |nteraction between LLM inputs and any tools are done via Model Context
Protocol (MCP)

Context-aware LLM models

Custom commands, skills and agents

« Shortcuts for repetitive text can be created via /commands, e.g. /debug

e /commands can include keyword SARGUMENTS

o Skills are shortcuts not explicitly called by the user but autonomously invoked
when matching a task context

* Agents are ,personalities” which the LLM can become, typically limiting the
iInstance of the LLM to work on one specific task, sparing out the context of

the different instances

MCP

Model Context Protocol

* Open-Source standard for connecting Al applications to external systems
(data sources, tools, workflows)

« Server-Client architecture where MCP-host (LLM) establishes connection(s) to
MCP server(s) maintained by MCP client

MCP Host (Al Application)

MCP Client 1 MCP Client 2 MCP Client 3 MCP Client 4
Dedicated Dedicated Dedicated Dedicated
connection connection connection connection

| . -
v hd A K
MCP Server A - Local MCP Server B - Local MCP Server C - Remote

(e.qg. Filesystem) (e.g. Database) (e.q. Sentry)

-

MCP

Model Context Protocol

Data Layer
JSON-RPC 2.0

Lifecycle
Management

Core Server
Features

Core Client
Features

Utility Features

Connection
Init./term.

Tools for Al
actions

Conn. Capability
Negotiation

Resources for
context data

Server to client LLM

sample requests

Notifications for
RT updates

Elicit user input

Progress
tracking

Prompts and

Interaction templates

Client logging

Transport Layer

Transport
Mechanisms:

Stdio transport

Streamable
HTTP transport

Context-aware LLM assisted scientific coding workflow
Workflows for coding In science

* Early stages in the project:

 Explore, plan, code, execute, refine, commit

» |Larger software projects:

 Write tests, commit; code, iterate, commit

* General workflow best practice (or if unknown workflow requirements):

 Ask LLM to make a plan on how to proceed, then iterate until satisfied with plan

,<Prompt Engineering“
Checklist for a good prompt

* Before writing a prompt, use the (mental) checklist:

* |s this prompt for a LLM-agent? If so, reduce any action requests to things
the agent would be in charge of

* Are there any specific predefined workflows to use?
« Specifically request a workflow through a /command
 Have the LLM figure out which workflow to use by referencing skills

* Define a specific alternative workflow in the prompt

,<Prompt Engineering“
Checklist for a good prompt

 Can | give context via file-references (direct: ,read @logfile.txt”, indirect: ,,read
the log file®)

* Direct file references are usually better, as the user often understands the
big picture and the problem better

 Does my prompt contain every additional information | want to add manually?

* |s my prompt written concise and succinct? Too much information might lead
to undesired results

Do | give emphasis on which part of the task | want to have handled in which
way and in which order?

Advanced Strategies

Intentional Compaction of Context Windows

* Regular Prompting Workflow: Prompt - Code - Evaluate - Prompt until you
reach a loop often indicated by ,,You're absolutely right.”

» Hitting the ,,You’re absolutely right” you can refresh context by starting a new
session and including in the prompt the learnings of the last session.

* |Intentional Compaction: Have original LLM agent write a progress file which
onboards the fresh-session agent

 Removes large context operations from current context like file-searching,
code flow understanding, file-edits, test/build output, MCP tool responses

Advanced Strategies

Subagents - Searcher Agent

 Subagents (i.e. multiple LLM instances working in parallel on different tasks in
the same project) are really about context control

* | ess and more focused information leads to less unnecessary context,
which leads to better results for this task

 Example:

o Searching Subagent - called through the prompt ,,find where xyz is
handled, use the subagent searcher” within the parent-agent

* The searcher subagent/child-agent finds the files, returns filenames
without cluttering the context window of the parent agent

Advanced Strategies

Subagents - Searcher Agent

o Split Workflow Steps into subagents to increase quality of individual steps
 For example: Explore, plan, code, execute, refine, commit as research, plan, implement
 Research Subagent: understand how the system works, find all relevant files, explore causes of xyz bug

* return document with problem specific information, and code references with filenames and line
numbers, function names etc.

« HUMAN REVIEW STEP

* Planning Subagent: Outline Exact implementation steps, include filenames, lines and snippets, add
explicit testing steps

« HUMAN REVIEW STEP

* Implementing Subagent: Straightforward from this point on

Human Intervention
Where to spend your time most efficiently?

ddddddd

Human Intervention
Where to spend your time most efficiently?

Human Intervention
Where to spend your time most efficiently?

bad plan

bad code

Demonstration

Conclusion

* Using Context-Aware LLM coding assistants and controlling the context is
helpful in saving time for researchers

* Controlling context actively: giving all necessary information, but not more

* Correct application includes identifying the importance of internal and external
quality measures for software and including this evaluation into the work

 MCP acting like a USB-standard for LLM-tool interactions helps tremendously,
as LLMs need only be supervised

 Human supervision and good planning is still key for good results

Acknowledgements

Contact: j.jones@tu-berlin.de

1 IS
v

SFB
10/8

Technische
Universitat
Berlin

Mroginski Group: Biomodeling @ TU Berlin
https://github.com/biomodeling-tub

mailto:j.jones@tu-berlin.de

