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• Large Language Models (LLMs) have emerged as a critical workload

• LLM Training and Inference both run on GPU clusters
o 8xGPUs per node (Nvidia's HGX/AMD's MI300X Platform) 

o NVlink/Infinity Fabric for intranode 'scale-up'

o RoCE or InfiniBand for internode 'scale-out'

• Performance is often bottlenecked by GPU-based collective communication
o Collective communication libraries (NCCL/RCCL) use a multi-ring based algorithm
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Background LLMs
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• Scale Up
• Easier to deploy server, easier to deploy software

• Easier to maintain software

• Is usually limited to a certain size of compute resources 

• Scale Out
• Used when Scaling UP is not sufficient anymore 

• Requires Orchestration

• Requires concepts for distributed maintenance of software 

• Requires multi node software stacks and tuning of the interconnect

Scale up as long as possible
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Scale UP vs Scale Out 
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• InfiniBand/ROCE 
• High bandwidth up to 400Gb/s

• Microsecond Latency 

• Requires kernel-space-drivers – additional tuning might be required

• Switched fabric great variety of topologies 

• PCIe 
• High bandwidth up to 512Gb/s

• Nanosecond Latency

• Expose through standard OS  

• Tree topology limited flexibility - Crosslinks are not easily achievable
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Background PCIe vs InfiniBand/ROCE
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• Fat Tree 
o Legacy network architecture stemming from multi tenant HPC environments

o First level of parallelization is within a node on the coherent links 

o The second level of parallelization is among all nodes under the same leaf switch

o For the third level of parallelization date is routed through the spine switch 

o The leaf-spine uplink ratio determines the blocking factor

o For large deployments it requires many switch hops and becomes expensive

5

Background Fat Tree
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• At a high-level, clusters have a fixed number of GPUs per node, connected by a 
high-bandwidth GPU<->GPU links, and multiple NICs per node

• Rail-Optimized Networks have emerged as an LLM/AI focused topology for 
RoCE/InfiniBand 
o For a Node with n NICs, define rails {0, …, n-1} where NIC i is associated with rail i

o All NICs in a rail are attached to the same leaf switch

o A spine-layer can provide all-to-all connectivity
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Background Rail Optimized Networks
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• NCCL/RCCL schedules multiple rings 
o All cross-node traffic takes a single switch-hop

o Cross rail traffic happens over NVLINK/XGMI

o Schedule multiple rings on independent rails

o Leverage PCIe P2P tools like GDRDMA
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Background Rail Optimized Networks
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• Modern GPU clusters are disaggregated 
systems
o GPU nodes have a fixed number of GPUs with 

a scale-up network like NVLink or XGMI

o Remote nodes are accessed over a 'scale-out' 
network, like RoCE or InfiniBand

• GPU Clusters are complicated to manage
o They require distributed file-system (Luster, 

BeeGFS, etc...)

o Job schedulers (Slurm, Kubernetes, etc...)

o Multi-Node programming models (MPI, 
SHMEM, etc...)
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Composable Disaggregated Infrastructure and FabreX
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• Composable Disaggregated Infrastructure 
(CDI) adds more GPUs to the 'scale-up' 
network

• We use FabreX, which is conceptually a 
'PCIe Network’

• Breaks up a node into individual resources
o The 'Host' contains the CPU and RAM

o GPUs are housed in Accelerator Pooling 
Appliances (APA)

• Top-of-rack PCIe switches connect 
resources together
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Composable Disaggregated Infrastructure and FabreX
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• Used FabreX PCIe Gen4 platform

• Kuma card, converts a PCIe slot to Mini SAS 
HD cables

• Draco switch, up to 6 PCIe Gen4x16 
connections

• AMD MI300X APA, codename Columba, 
comes in two configurations:
o Cascade: 2-Kumas per box

o Flat: 4-Kumas per box

• What is an optimal PCIe topology for LLMs?
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Composable Disaggregated Infrastructure and FabreX
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Standard Vs Rail-Optimized PCIe Network
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Five Topologies we Investigated

1s-2rp-std-cascade

2s-2rp-std-flat 2s-2rp-split-flat

1s-1rp-std-cascade 1s-2rp-split-cascade
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GB/second All_Gather All_Reduce Broadcast

1s-2rp-split-cascade 56 54 54

1s-1rp-std-cascade 56 54 54

1s-2rp-std-cascade 25 25 25

2s-2rp-split-flat 92 100 107

2s-2rp-std-flat 27 27 27

Results Default vs Split Topology

Bus bandwidth 2s-2rp-std-flat topology vs the 2s-2rp-split-flat topology
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Results Default vs Optimized RCCL Rings

GB/second Default Optimized Relative Change

All_Reduce 75 88 17%

Reduce_Scatter 83 108 30%

All_Gather 66 99 50%

Bus bandwidth Default vs the optimized RCCL rings on the 2s-2rp-split-flat 
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• ZeRO optimizations 
from Deepspeed
o Z-1 uses All_Gather

and All_Reduce for 
gradients + weight 
updates

o Z-3 adds Broadcasts 
for model weights, 
resulting in ~40% 
more communication 
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Results LLM Training Performance 

Samples/second ROCm-v6.1 Optimized Relative change

1.3B z-1 78.83 88.42 10.81%

1.3B z-3 85.52 88.72 3.27%

13B z-1 12.61 14.33 12.01%

13B z-3 15.80 16.24 2.72%

TFLOPs/GPU ROCm-v6.1 Optimized Relative change

1.3B z-1 120.0 134.6 10.85%

1.3B z-3 130.6 135.0 3.26%

13B z-1 175.8 199.8 12.01%

13B z-3 220.3 226.5 2.74%

GPT-NeoX training comparing RCCL v6.1 vs Optimized RCCL on 2s-2rp-split-flat
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• Evaluated Llama-405B inference 
performance as a web-server using 
VLLM 

• One process launches the server 
o Tested 16-GPU and 8-GPU tensor 

parallelism across different topologies

• Separate process issues request 
and measures the time to 
completion
o 1024 random tokens are sent, 128 

tokens are generated
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Results Inference Performance 

Topology 8-GPU TP 16-GPU TP

1s-2rp-std-cascade 24.58 15.86

1s-2rp-split-cascade 24.62 25.38

2s-2rp-split-flat 24.60 28.66

Llama-3.1-405B inference performance, output tokens per seconds, with VLLM
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• Heterogenous Deployments of FPGAs, ASICs and GPUs 

• PCIe Scale-up + RoCE/IB Scale-out 
o FabreX provides high performance/low latency scale up combined with 

ROCE/IB scale out/storage access   

• PCIe Gen 5 studies
o Microbenchmarks have shown that collective bus-bandwidth has 

doubled vs Gen4, as expected
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Future Work 
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SC25 BOF: 
The Future of Open Interconnects 
for AI
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