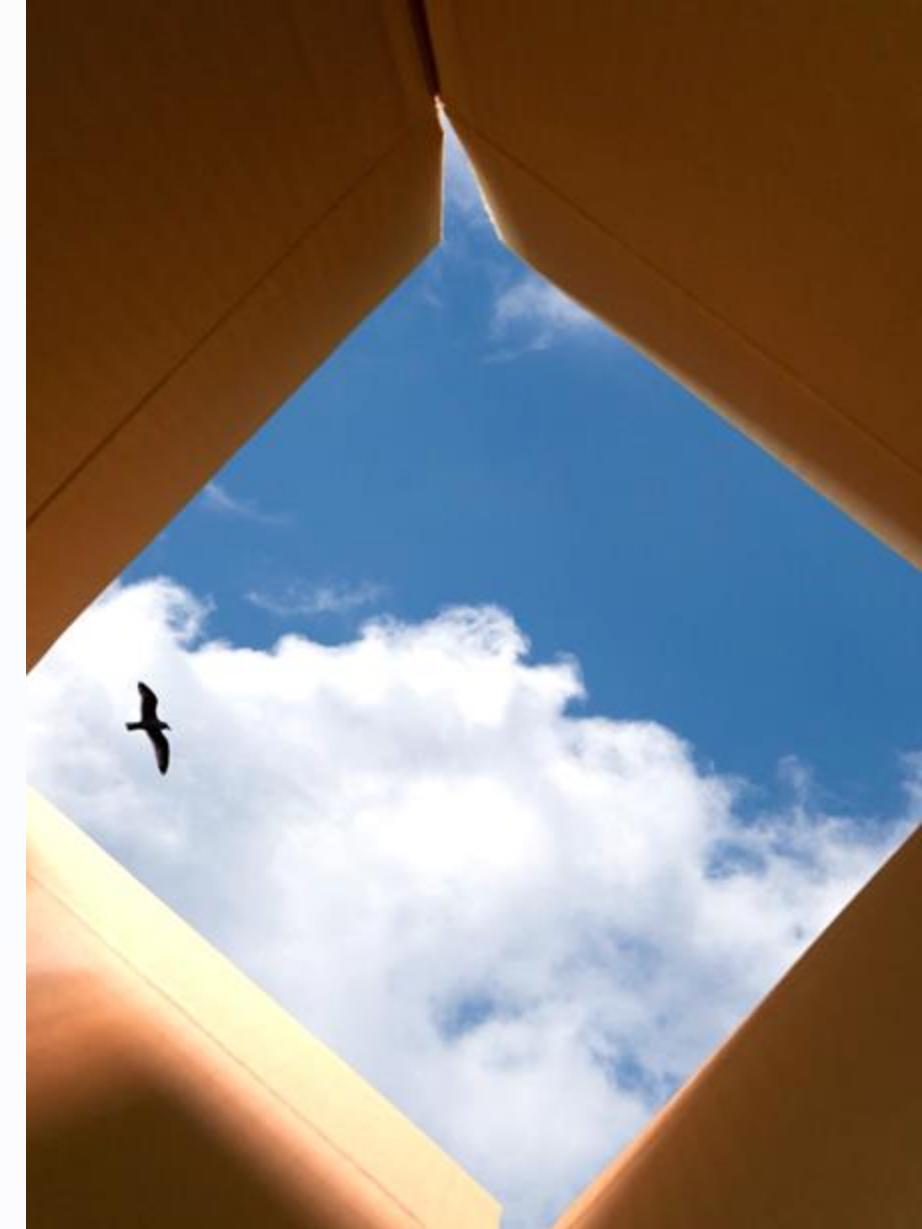


The Scaling Dilemma: Interconnects for AI Infrastructure

Konstantin Rygol - Manager, AI Team - krygol@gigaio.com



| Background LLMs

- Large Language Models (LLMs) have emerged as a critical workload
- LLM Training and Inference both run on GPU clusters
 - 8xGPUs per node (Nvidia's HGX/AMD's MI300X Platform)
 - NVlink/Infinity Fabric for intranode 'scale-up'
 - RoCE or InfiniBand for internode 'scale-out'
- Performance is often bottlenecked by GPU-based collective communication
 - Collective communication libraries (NCCL/RCCL) use a multi-ring based algorithm

| Scale UP vs Scale Out

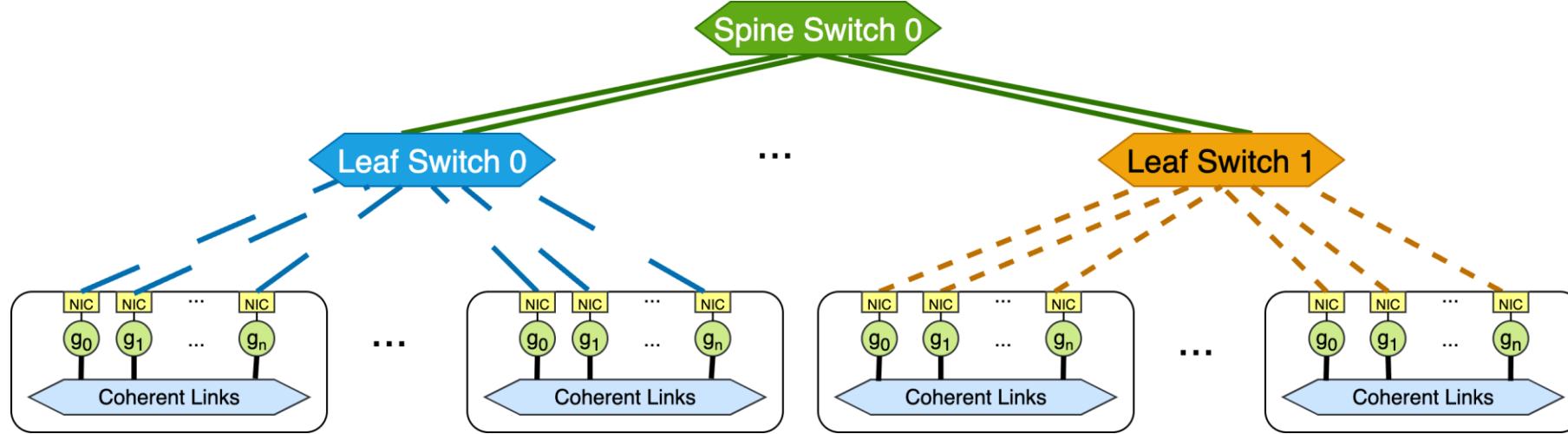
- Scale Up
 - Easier to deploy server, easier to deploy software
 - Easier to maintain software
 - Is usually limited to a certain size of compute resources
- Scale Out
 - Used when Scaling UP is not sufficient anymore
 - Requires Orchestration
 - Requires concepts for distributed maintenance of software
 - Requires multi node software stacks and tuning of the interconnect

Scale up as long as possible

| Background PCIe vs InfiniBand/ROCE

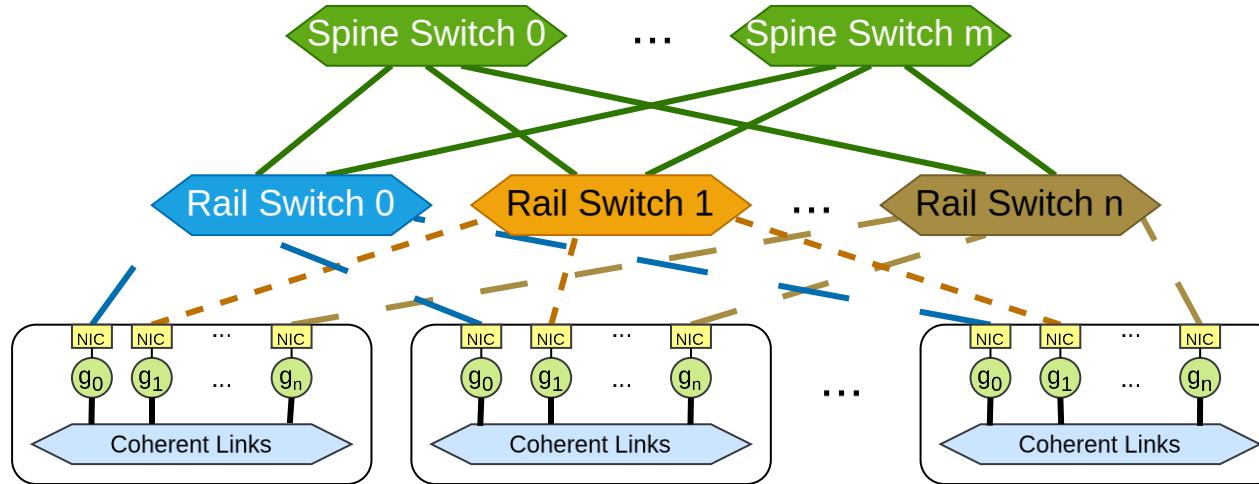
- InfiniBand/ROCE
 - High bandwidth up to 400Gb/s
 - Microsecond Latency
 - Requires kernel-space-drivers - additional tuning might be required
 - Switched fabric great variety of topologies
- PCIe
 - High bandwidth up to 512Gb/s
 - Nanosecond Latency
 - Expose through standard OS
 - Tree topology limited flexibility - Crosslinks are not easily achievable

Background Fat Tree



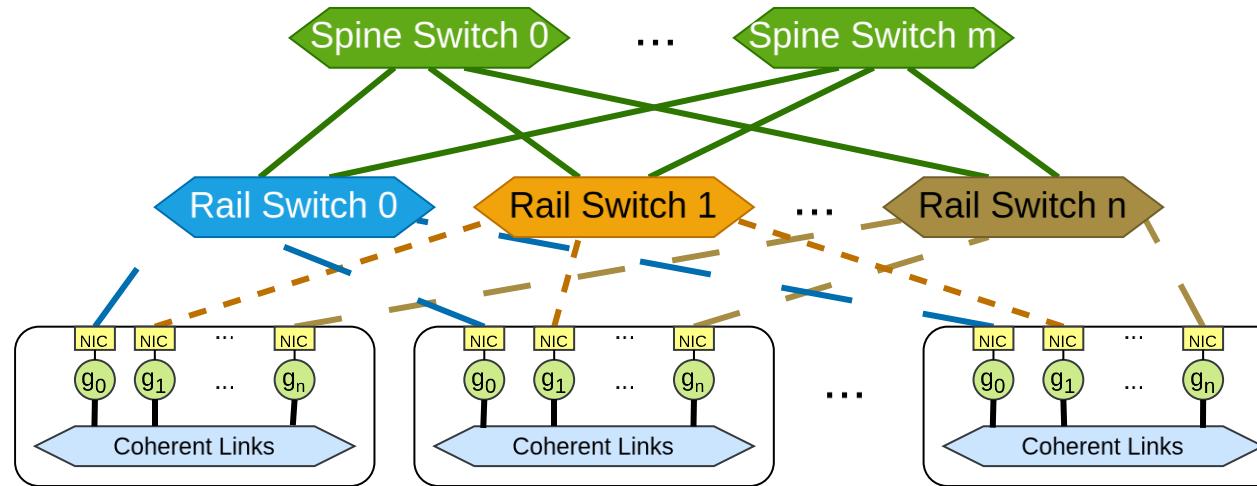
- Fat Tree
 - Legacy network architecture stemming from multi tenant HPC environments
 - First level of parallelization is within a node on the coherent links
 - The second level of parallelization is among all nodes under the same leaf switch
 - For the third level of parallelization data is routed through the spine switch
 - The leaf-spine uplink ratio determines the blocking factor
 - For large deployments it requires many switch hops and becomes expensive

| Background Rail Optimized Networks



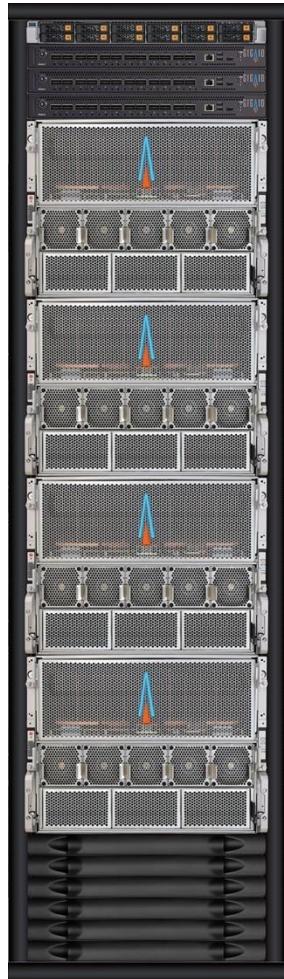
- At a high-level, clusters have a fixed number of GPUs per node, connected by a high-bandwidth GPU<->GPU links, and multiple NICs per node
- Rail-Optimized Networks have emerged as an LLM/AI focused topology for RoCE/InfiniBand
 - For a Node with n NICs, define rails $\{0, \dots, n-1\}$ where NIC i is associated with rail i
 - All NICs in a rail are attached to the same leaf switch
 - A spine-layer can provide all-to-all connectivity

| Background Rail Optimized Networks



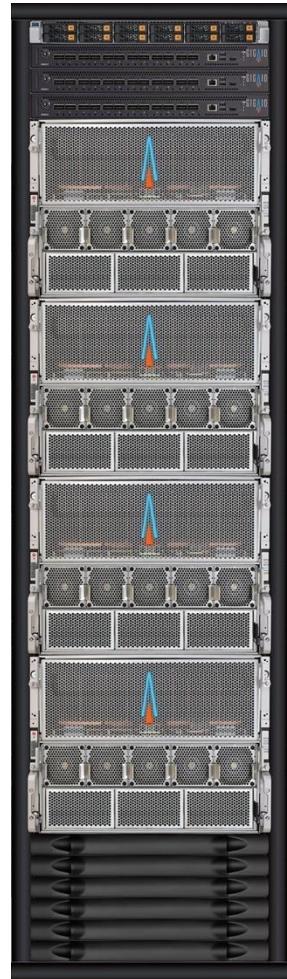
- NCCL/RCCL schedules multiple rings
 - All cross-node traffic takes a single switch-hop
 - Cross rail traffic happens over NVLINK/XGMI
 - Schedule multiple rings on independent rails
 - Leverage PCIe P2P tools like GDRDMA

| Composable Disaggregated Infrastructure and FabreX



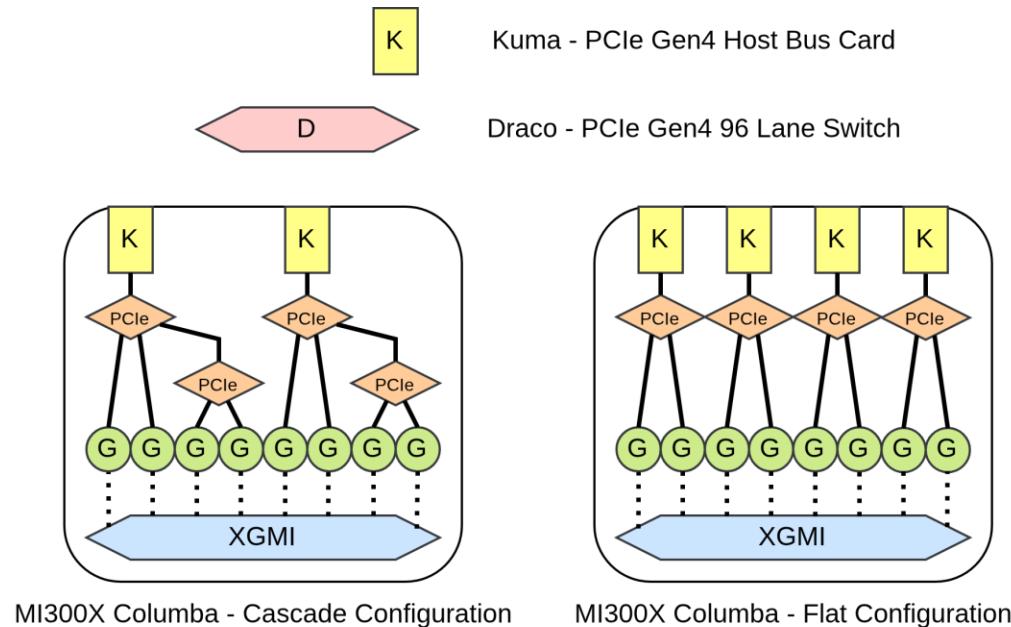
- Modern GPU clusters are disaggregated systems
 - GPU nodes have a fixed number of GPUs with a scale-up network like NVLink or XGMI
 - Remote nodes are accessed over a 'scale-out' network, like RoCE or InfiniBand
- GPU Clusters are complicated to manage
 - They require distributed file-system (Luster, BeeGFS, etc...)
 - Job schedulers (Slurm, Kubernetes, etc...)
 - Multi-Node programming models (MPI, SHMEM, etc...)

| Composable Disaggregated Infrastructure and FabreX



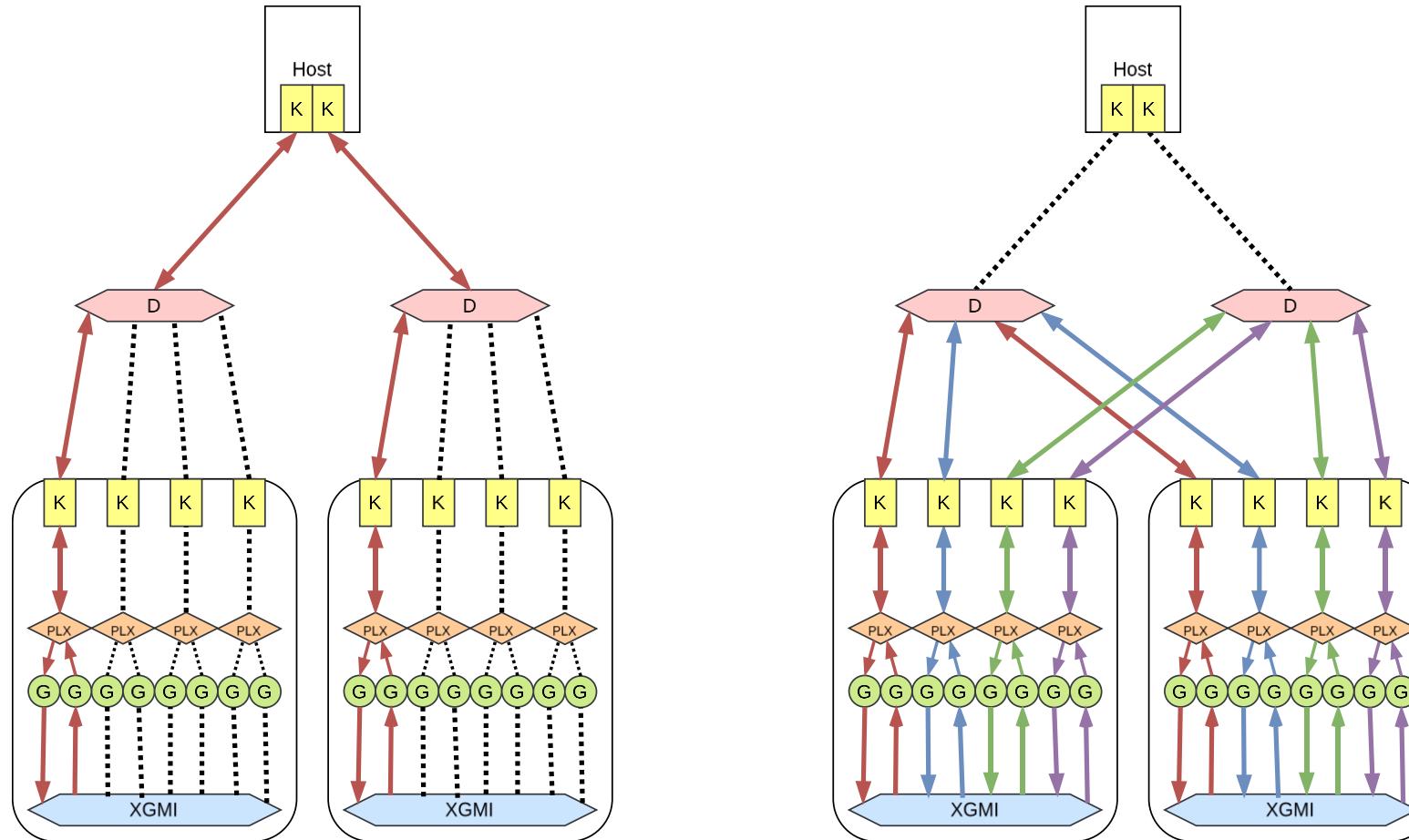
- Composable Disaggregated Infrastructure (CDI) adds more GPUs to the 'scale-up' network
- We use FabreX, which is conceptually a 'PCIe Network'
- Breaks up a node into individual resources
 - The 'Host' contains the CPU and RAM
 - GPUs are housed in Accelerator Pooling Appliances (APA)
- Top-of-rack PCIe switches connect resources together

Composable Disaggregated Infrastructure and FabreX

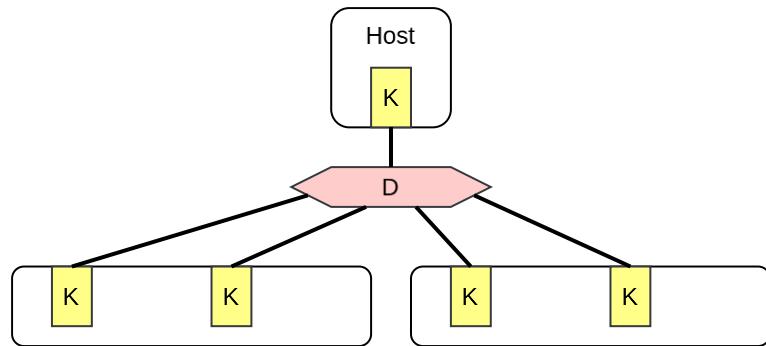


- Used FabreX PCIe Gen4 platform
- *Kuma card*, converts a PCIe slot to Mini SAS HD cables
- *Draco switch*, up to 6 PCIe Gen4x16 connections
- AMD MI300X APA, codename *Columba*, comes in two configurations:
 - *Cascade*: 2-Kumas per box
 - *Flat*: 4-Kumas per box
- What is an optimal PCIe topology for LLMs?

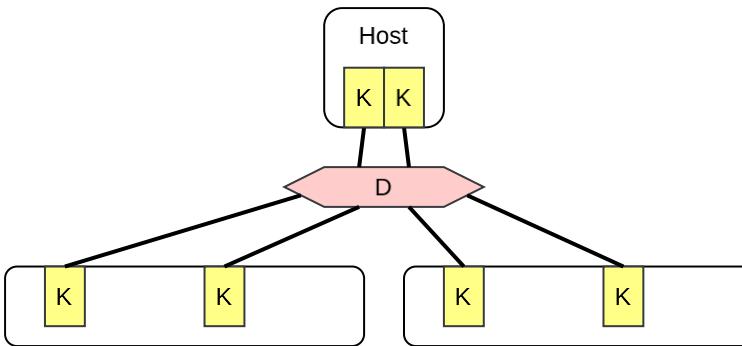
I Standard Vs Rail-Optimized PCIe Network



| Five Topologies we Investigated



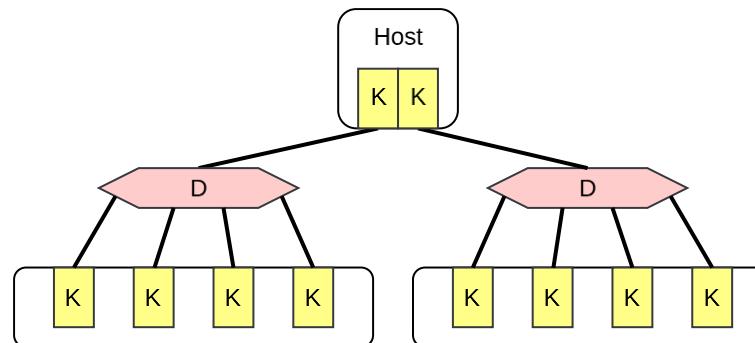
1s-1rp-std-cascade



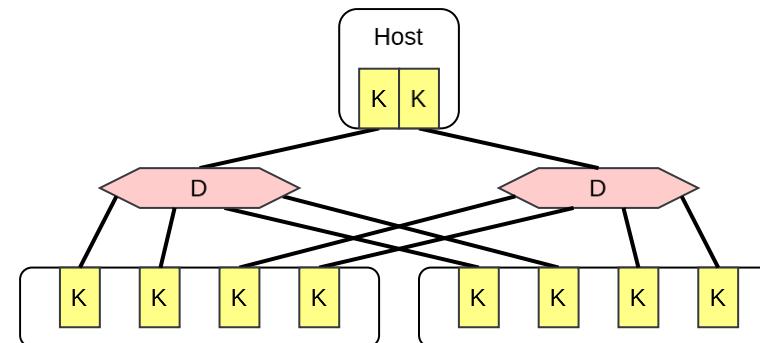
1s-2rp-std-cascade



1s-2rp-split-cascade



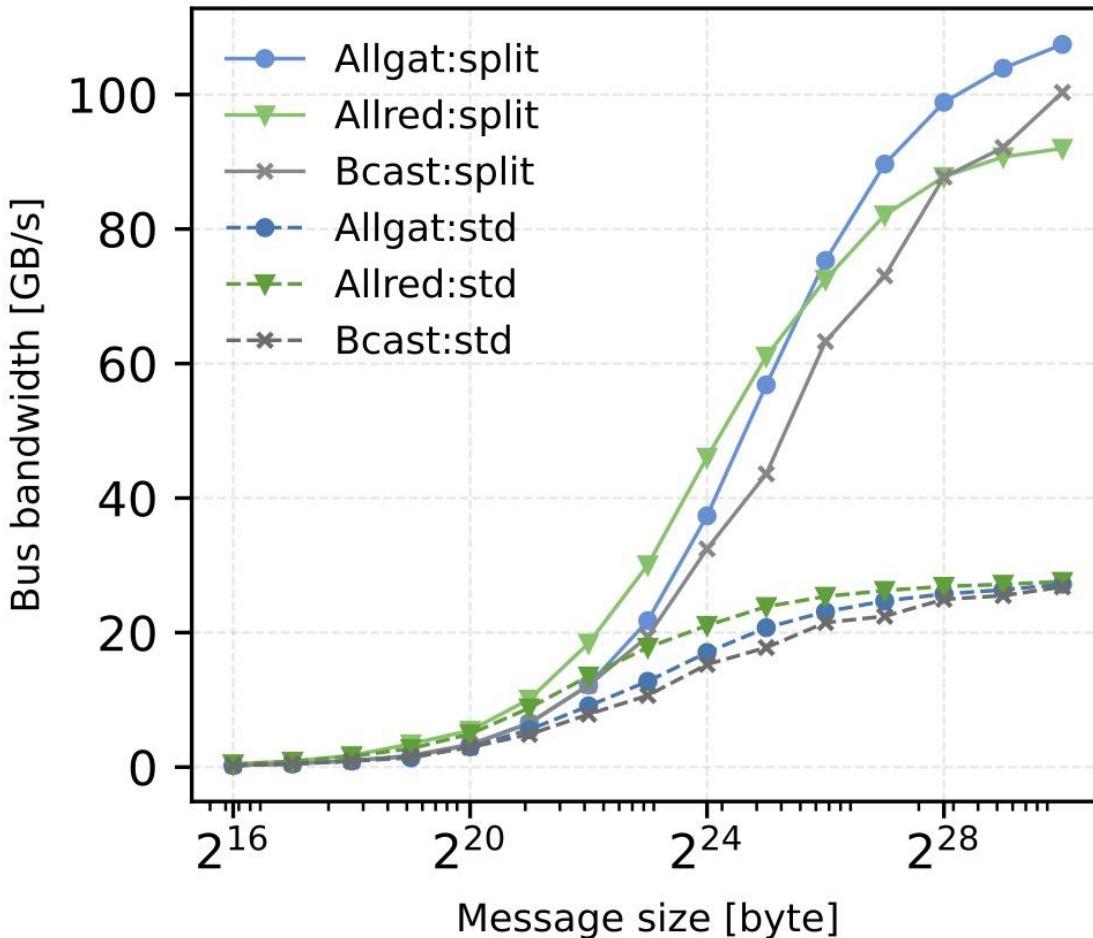
2s-2rp-std-flat



2s-2rp-split-flat

Results Default vs Split Topology

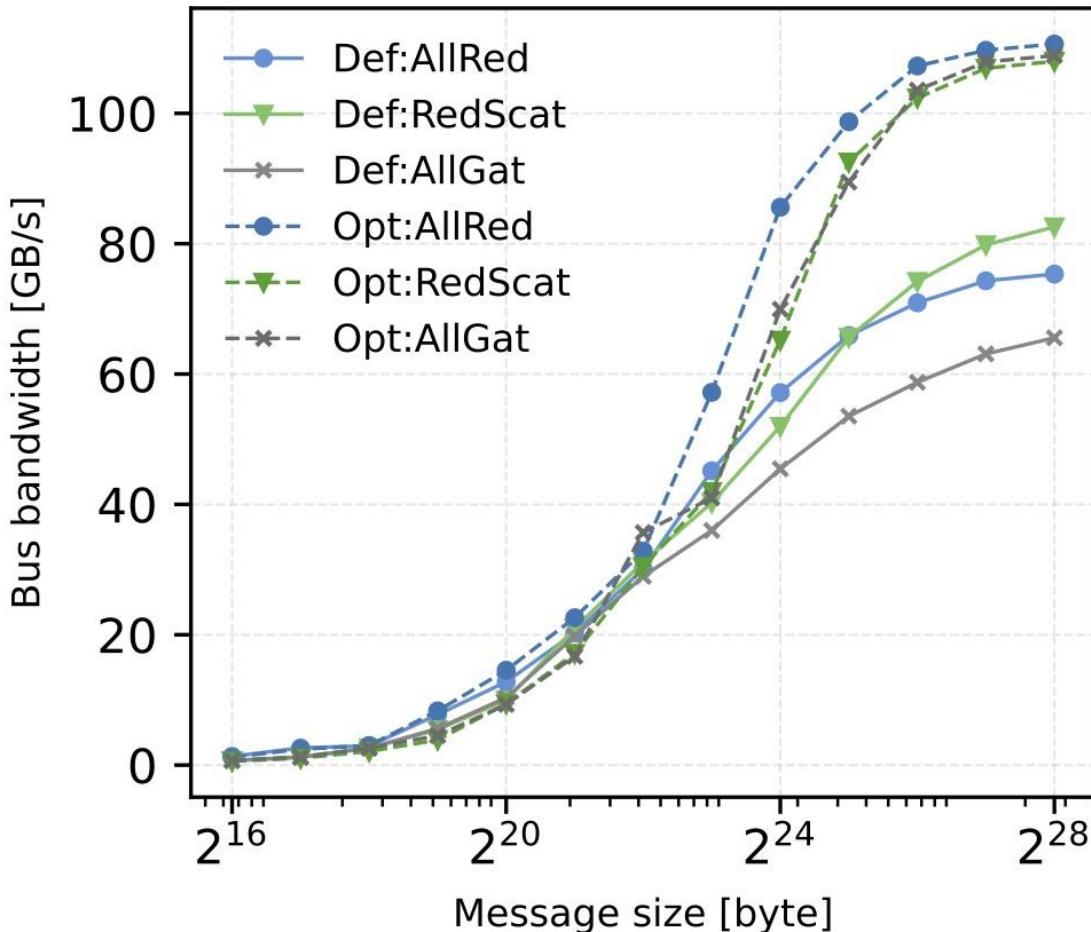
Bus bandwidth 2s-2rp-std-flat topology vs the 2s-2rp-split-flat topology



GB/second	All_Gather	All_Reduce	Broadcast
1s-2rp-split-cascade	56	54	54
1s-1rp-std-cascade	56	54	54
1s-2rp-std-cascade	25	25	25
2s-2rp-split-flat	92	100	107
2s-2rp-std-flat	27	27	27

Results Default vs Optimized RCCL Rings

Bus bandwidth Default vs the optimized RCCL rings on the 2s-2rp-split-flat



GB/second	Default	Optimized	Relative Change
All_Reduce	75	88	17%
Reduce_Scatter	83	108	30%
All_Gather	66	99	50%

Results LLM Training Performance

GPT-NeoX training comparing RCCL v6.1 vs Optimized RCCL on 2s-2rp-split-flat

Samples/second	ROCM-v6.1	Optimized	Relative change
1.3B z-1	78.83	88.42	10.81%
1.3B z-3	85.52	88.72	3.27%
13B z-1	12.61	14.33	12.01%
13B z-3	15.80	16.24	2.72%

TFLOPs/GPU	ROCM-v6.1	Optimized	Relative change
1.3B z-1	120.0	134.6	10.85%
1.3B z-3	130.6	135.0	3.26%
13B z-1	175.8	199.8	12.01%
13B z-3	220.3	226.5	2.74%

- ZeRO optimizations from Deepspeed
 - Z-1 uses All_Gather and All_Reduce for gradients + weight updates
 - Z-3 adds Broadcasts for model weights, resulting in ~40% more communication

Results Inference Performance

Llama-3.1-405B inference performance, output tokens per seconds, with VLLM

Topology	8-GPU TP	16-GPU TP
1s-2rp-std-cascade	24.58	15.86
1s-2rp-split-cascade	24.62	25.38
2s-2rp-split-flat	24.60	28.66

- Evaluated Llama-405B inference performance as a web-server using VLLM
- One process launches the server
 - Tested 16-GPU and 8-GPU tensor parallelism across different topologies
- Separate process issues request and measures the time to completion
 - 1024 random tokens are sent, 128 tokens are generated

| Future Work

- Heterogenous Deployments of FPGAs, ASICs and GPUs
- PCIe Scale-up + RoCE/IB Scale-out
 - FabreX provides high performance/low latency scale up combined with ROCE/IB scale out/storage access
- PCIe Gen 5 studies
 - Microbenchmarks have shown that collective bus-bandwidth has doubled vs Gen4, as expected

SC25 BOF: The Future of Open Interconnects for AI

GigaIO AI Team,

<https://ieeexplore.ieee.org/document/11018266>

Benjamin Kitor - bkitor@gigaio.com

Konstantin Rygol - krygol@gigaio.com

www.gigaio.com