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Vision Transformers for Images or Videos '
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Vision Transformers for Images or Videos "

Transformer Encoder
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How can we make transformer
architectures more efficient?




Efficient Image and Video Understanding

» Transformers are very expensive (high GFLOP)
* Not all GFLOPS are needed for all videos or images
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Reduce number of tokens for inference

.".V \\\
oo M .
N ' s
SO | i - e ‘ - ’
e IS - r . - . .
-_ i " ) Il
| -<7—; - o - o -
= |
b d -
P_ —
{ - - LI - - 4
N : » s Py - - > A > "‘ ~—~ ——— - o ) -




Efficient Vision Transformers "

Input Stage 11 Input Stage 11

Use only as much
tokens as needed
for Inference

[ M. Fayyaz et al. Adaptive Token
Sampling For Efficient Vision
Transformers. ECCV 2022 ]




Efficient Vision Transformers
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Efficient Vision Transformers

Input Tokens Token Score Assignment
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Efficient Vision Transformers

Token Score Assignment

Input Tokens
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Efficient Vision Transformers

Input Tokens Token Score Assignment
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Efficient Vision Transformers

Input Tokens Token Score Assignment
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Efficient Vision Transformers
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Efficient Vision Transformers

Input Tokens Token Score Assignment
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Qualitative Results
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Quantitative Results
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Quantitative Results
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Replace attention by state space model
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State Space Model for Video
Understanding
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State Space Model for Video
Understanding

L

Accuracy vs. Number of Parameters

* VideoMamba has major
shortcomings

« Does not scale
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State Space Model for Video "

Understanding
* VideoMamba has major
shortcomings
* Does not scale
 Instable training

[ H. Suleman et al. Distillation-free Scaling of
Large SSMs for Images and Videos. arxiv 2024 ]
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State Space Model for Video "

Understanding

* VideoMamba has major &
shortcomings

* Does not scale

 Instable training

* More sensitive to image
corruption compared to
transformer

Performance on JPEG Compression Corruption
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State Space Model for Video
Understanding BONN _

Performance on JPEG Compression Corruption Accuracy vs. Number of Parameters
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Video Question
Answering

10&0, Video-Panda

Demos from MSVD-QA




Parameter-Efficient Video-Language
Models

Video-LLaVA
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[ J. Yi et al. Video-Panda: Parameter-efficient Alignment for Encoder-free Video-Language Models. CVPR 2025 ]
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Parameter-Efficient Video-Language
Models

« No need for additional vision encoders
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Parameter-Efficient Video-Language "
Models

* No need for additional vision encoders

Model #Param.(M) Inference time (ms)
VideoChatGPT [26] 307 171
Video-LLaVA [22] 425 125

Video-Panda 45 41




Video Question
Answering

10&0, Video-Panda

Demos from TGIF-QA




Combine local and global attention
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Vision Transformers for Action Segmentation "

Ground
Truth

[ E. Bahrami et al. How Much Temporal Long Term Context IS Needed for Actlon Segmentation? ICCV 2023 ]
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Vision Transformers for Action Segmentation "

Attention over local window
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Vision Transformers for Action Segmentation "

3

Attention over subsampled video
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Vision Transformers for Action Segmentation '

Attention over local window

Windowed
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Vision Transformers for Action Segmentation "

Attention over local window Attention over subsampled video
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Vision Transformers for Action Segmentation "

Ground
Truth

[ E. Bahrami et al. How Much Temporal Long Term Context IS Needed for Actlon Segmentation? ICCV 2023 ]
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Vision Transformers for Action Segmentation

Ground
Truth

LTContext
100%
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[ E. Bahrami et al. How Much Temporal Long-Term Context is Needed for Action Segmentation? ICCV 2023 ]
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Vision Transformers for Action Segmentation "
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Anticipating Behavior "
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Gated Temporal Diffusion for Anticipation "

 Forecast future actions and their durations

Samp. 1
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Scrambled eggs

[O Zatsarynna et al. Gated Temporal Diffusion for Stochastlc Long term Dense Anticipation. ECCV 2024 ]




Gated Temporal Diffusion for Anticipation "

* Forecast future actions and their durations
* Model uncertainty of the future

E ...
l» . — [ACK €00 i

| Samp. 3
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Scrambled eggs Samp. 4

[ O. Zatsarynna et al. Gated Temporal Diffusion for Stochastic Long-term Dense Anticipation. ECCV 2024 ]




Gated Temporal Diffusion for Anticipation "

* Forecast future actions and their durations
* Model uncertainty of the future
* Model uncertainty of the observation

4 Samp. 1

Samp. 2

Samp. 3

Cereals Samp. 4

Observation Anticipation

[ O. Zatsarynna et al. Gated Temporal Diffusion for Stochastic Long-term Dense Anticipation. ECCV 2024 ]




Diffusion Model

Diffusion models consist of two processes:
* Forward diffusion process that gradually adds noise to input

* Reverse denoising process that learns to generate data by
denoising

Forward diffusion process (fixed)

Data Noise

Reverse denoising process (generative)

Gall — Lamarr Institute for Machine Learning and Artificial Intelligence
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Generative Process

Reverse denoising process

Reverse denoising process (generative)

<€

Data Noise
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MANTA: Diffusion Mamba for Anticipation "

-
-

OBS 0,0...,0,0

Feature
extractor

[ O. Zatsarynna et al. MANTA: Diffusion Mamba for Efficient and Effective Stochastic Long-Term Dense
Anticipation. CVPR 2025 ]
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MANTA: Diffusion Mamba for Anticipation "

-
-

OBS 0,0...,0,0

Feature
extractor

[ O. Zatsarynna et al. MANTA: Diffusion Mamba for Efficient and Effective Stochastic Long-Term Dense
Anticipation. CVPR 2025 ]
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MANTA: Diffusion Mamba for Anticipation

MANTA . MANTA
Block Rlock

Feature

extractor

[ O. Zatsarynna et al. MANTA: Diffusion Mamba for Efficient and Effective Stochastic Long-Term Dense
Anticipation. CVPR 2025 ]
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MANTA: Diffusion Mamba for Anticipation "

MANTA . MANTA
Block Rlock

Feature
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[ O. Zatsarynna et al. MANTA: Diffusion Mamba for Efficient and Effective Stochastic Long-Term Dense
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MANTA: Diffusion Mamba for Anticipation

SIL

pour cereals

pour coffee
B pour milk
) pour_sugar
Bl spoon_sugar
B stir coffee
 take_bowl
. take_cup

s e [ O. Zatsarynna et al. MANTA:
Sample 1 m— e . - : _ Diffusion Mamba for Efficient
and Effective Stochastic
sample 3| Bl Long-Term Dense

Sample 4 Anticipation. CVPR 2025 ]
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MANTA: Diffusion Mamba for Anticipation

SIL Bpeed)

I add_saltnpepper
I crack_egg
I cut_bun
fry egg
B put_toppingOnTop
I smear butter
B stirfry egg
B take bowl
take plate

Observation
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Wildfire Forecasting '

Wildfire susceptibility map for
02/07/2021
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Qualitative Results
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[ M.H.S. Eddin et al. Location-Aware Adaptive Normalization: A Deep Learning Approach for Wildfire Danger
Forecasting. IEEE Transactions on Geoscience and Remote Sensing 2023 |
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Qualitative Results
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Forecasting Agricultural Drought

Simulation Projection

Future>




Forecasting Agricultural Drought "

TerrSysMP
Simulation

[ M.H.S. Eddin et al. Focal-TSMP: Deep learning for vegetation health prediction and agricultural drought
assessment from a regional climate simulation. Geoscientific Model Development 2024 ]
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Summary "

* There are many ways to improve the efficiency of transformer
architectures

« State space models / Mamba architectures are more efficient,
but have some disadvantages compared to transformers

 HPC is crucial for all experiments:
« Marvin (University of Bonn)

 JUWELS (WestAl, Julich Supercomputing Centre)
* Leonardo (EuroHPC, CINECA, ltaly)




Thank you for your attention.
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